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Figure 1: We optimize space-time forces to drive a grid-based smoke simulation (2567, 40 frames) to match a 3D armadillo target. We reduce
memory consumption by 80% compared to a full resolution baseline with our bulk and iterative subgrid differentiable simulation approach.

Abstract

Differentiable simulation is an emerging field that offers a powerful and flexible route to fluid control. In grid-based settings,
high memory consumption is a long-standing bottleneck that constrains optimization resolution. We introduce a two-step al-
gorithm that significantly reduces memory usage: our method first optimizes for bulk forces at reduced resolution, then refines
local details over sub-domains while maintaining differentiability. In trading runtime for memory, it enables optimization at
previously unattainable resolutions. We validate its effectiveness and memory savings on a series of fluid control problems.
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1. Introduction

Modern fluid simulations are widely used in many industries, for
example, visual effects, game development, manufacturing, and ad-
vertising; however, controlling the behaviour of these simulations
remains challenging due to the non-linearity of their governing
equations.

Fluid control is an inverse problem where the goal is to com-
pute initial simulation states and control parameters, to guide the
simulated output to an approximate of a target state. Differentiable
simulation [dSA*18, HAL*19, UBF*20] has recently emerged as
a promising solution that uses automatic differentiation (AutoD-
iff) [BPRS18] to automate the computation of target loss gradients
(with respect to simulation parameters). These gradients can then
be used with gradient-based optimization to solve the inverse prob-
lems. This approach is general, supporting many applications in
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a single framework and avoiding the need to create handcrafted
methods.

Despite the advantages, differentiable simulation has high mem-
ory consumption requirements: as simulation resolution increases,
the memory required to compute gradients grows non-linearly, es-
pecially in 3D scenes. While more powerful hardware and/or larger
compute farms can be used to distribute this cost, this is imprac-
tical for games and visual effects artists who primarily rely on
consumer-grade hardware to produce visually pleasing animations.
For instance, more than 40GB of VRAM are needed to optimize for
control forces for a 256 resolution simulation for 40 timesteps as
shown in Figure 1. This memory constraint limits the applicability
and utility of differentiable simulation in the gaming and visual ef-
fects industries. Our work enables scalable differentiable fluid sim-
ulation for such large scale fluid control tasks.

We draw inspiration from domain decomposition and multi-
resolution optimization to address this memory bottleneck. Our
contributions include the following:
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e an iterative differentiable smoke simulation optimization frame-
work that solves control problems with significantly reduced
memory consumption at the expense of higher computation time;

e a subgrid method that mimics full-resolution simulation, main-
taining differentiability w.r.t. simulation inputs;

e a hierarchical domain subdivision strategy that further reduces
memory consumption for gradient computation, with a trade-off
in runtime and slight accuracy degradation in some cases; and

e a PYTHON implementation and performance measurements,
benchmarked against an existing differentiable simula-
tor [HTK19].

2. Previous Work

We discuss relevant work in fluid simulation and control from the
computer graphics literature, before summarizing advances from
differentiable simulation and its application to fluid control. We fi-
nally review the use of domain decomposition and multi-resolution
optimization methods in fluid simulations, since our algorithm
draws inspiration from both techniques.

2.1. Fluid Simulation

The field of fluid simulation has enjoyed significant advancements
in the past few decades. Lagrangian particle-based methods, such
as smoothed particle hydrodynamics (SPH) [MCGO3], treat flu-
ids as particle systems and use smoothing kernels to approximate
properties carried by each particle. In contrast, Eulerian grid-based
methods [FM97b, Sta99] compute the evolution of the fluid quanti-
ties at fixed positions in space. Hybrid methods, such as particle in
cell (PIC) and fluid implicit particle (FLIP) [Har62, BR86,ZB05],
combine the advantages of both representations. In the recent years,
new techniques such as flow map based fluids [ZCD*24] and
Monte Carlo fluids [RSO*22, SBH24] have been explored to in-
troduce new families of methods with distinct sets of properties.

Our work targets the grid-based fluid representation. Specifi-
cally, we adapt the stable fluids algorithm [Sta99, Bril5], which
is an industry-standard grid-based method renowned for its sim-
plicity and unconditional stability. Our implementation builds on
the semi-Lagrangian approach introduced by this algorithm, and in
addition, we implement the staggered grid discretization [HW65]
to enhance simulation accuracy and prevent null-space problems.
While our algorithm leverages this specific implementation, it is
readily generalizable to other grid-based fluid simulation methods.
For instance, in collocated grids, we can adapt our method to eval-
uate vector quantities at grid centres instead of at cell face centres.

2.2. Fluid Control

Fluid control is an important yet challenging problem that has
countless applications in many fields, ranging from looping anima-
tion and keyframe matching in games and visual effects [JWLC23,
HTK19, UBF*20], to material shape and property optimization in
manufacturing and engineering [MP04, HLM*19]. In the field of
computer graphics, fluid control is broadly applied to the problem
of target-driven fluid animation [Sch21]. Over the past few decades,
extensive advancements have been made in this field. Early work

tackles this problem by directly modifying fluid properties such as
pressure and velocity [FM97a]. Some later works tackle the prob-
lem of target-driven fluid animation by directly computing forces
based on the difference between the simulated smoke state and the
desired target states [FL04, MM13], and others merge reverse sim-
ulations with forward ones to create visually pleasing transitions to
achieve the target state [OFEH18, SPM22].

Another popular class of methods that controls the fluid motion
is gradient-based optimization methods. Analytical gradients for
each fluid operator have been derived [TMPS03] and were later
accelerated using the adjoint method [MTPS04]. Recently, further
improvements have focused on improving the quality, runtime, and
memory consumption of the gradient-based fluid control problems
[PM17, TACS21, CLL24]. These methods all rely on the analyti-
cally derived gradients for optimization, but a major drawback is
that the gradient derivations are tightly coupled with the solver
implementation. Any change in the solver requires re-derivation
and re-implementation of the gradients, which is a cumbersome
and error-prone process. Our method leverages modern AutoDiff
frameworks, adopting a differentiable simulation approach that is
general and flexible, with gradient computation independent of the
underlying solvers.

2.3. Differentiable Simulation

Alongside the recent surge of research in machine learning, the
paradigm of differentiable simulation has gained popularity over
the past few years. Using automatic differentiation (AutoDift)
[BPRS18], differentiable simulations enable gradient propagation
from the output states of physics simulations to the input parame-
ters. These gradients are computed automatically and can be used
in gradient-based optimization methods. Moreover, these differ-
entiable simulations can act as modular components that can be
easily integrated into machine learning networks and pipelines
[IMG*21,dSA™18,LXY*23].

There are many differentiable simulation frameworks. DiffTaichi
[HAL*19] accelerates gradient computation using source code
transformations and global tracing. PHIFLOW [HTK19], specializ-
ing in differentiable fluid simulations, supports multiple AutoDiff
frameworks including PyTorch [PGM*19], TensorFlow [AAB*16]
and Jax [SC20]. While differentiable simulation is generally ag-
nostic to underlying solver implementations, this flexibility comes
at the cost of high memory consumption arising from the need
to build computation graphs that store operations during solver
roll outs [BPRS18]. This memory consumption scales non-linearly
with the simulation’s degrees of freedom. This behaviour is espe-
cially severe for grid-based simulations, where depending on the di-
mensionality, a linear grid resolution increase results in a quadratic
or cubic increase in the degrees of freedom.

Gradient checkpointing [CXZG16] partially addresses this chal-
lenge by temporally segmenting the simulation and only construct-
ing computation graphs in each segment; however, it does not ad-
dress spatial memory constraints and therefore does not scale ef-
fectively with simulation resolution. Our work introduces a novel
method to tackle this spatiotemporal memory bottleneck, borrow-
ing ideas from domain decomposition and multi-resolution meth-
ods.
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2.4. Domain Decomposition and Multi-Resolution
Optimization

Domain decomposition is a class of methods for solving partial dif-
ferential equations by dividing larger problems into smaller sub-
problems, solving each separately before merging local solutions
into a global result. Domain decomposition has been success-
fully applied to fluid simulations in physics [THH21] and graph-
ics [GNS*12, CZY17]. High-performance computing (HPC) and
distributed fluid simulations [TAB*96,ZG11, GNS*12, MSQ* 18]
decompose large simulation domains into sub-domains and solve
each sub-domain in parallel on multiple compute units. The sub-
domains communicate with each other through methods such as
halo and ghost boundary cells [ZG11,ZM18] to ensure consistency
across domain boundaries. Our method, described in Section 3.2,
shares similarities with this strategy; however, these sub-domain
communication methods cannot be applied directly to control prob-
lems or differentiable simulations, where the gradient computations
between the subdomains are undefined due to the discontinuities.
Although there has been some exploration of domain decompo-
sition in fluid control [YC17], little prior work addresses these
challenges in differentiable simulations. We propose an iterative
scheme to resolve this limitation.

Hierarchical multi-resolution methods are another class of ap-
proaches commonly used for large scale optimization problems
[KYO00, RWA21, XZ23]. This class of methods solve the problem
progressively from coarse to fine resolution. In fluid simulations,
multigrid methods are commonly used to accelerate convergence
by iteratively computing residual solutions across different reso-
lution levels, using high-frequency local solutions to refine low-
frequency global solutions [MST10,PM17].

We are inspired by domain decomposition and multi-resolution
optimization. Our approach begins with a coarse optimization,
which captures the global fluid motion. It is then followed by a se-
ries of iterative sub-domain optimizations to refine the local forces.

3. Method

We target inviscid fluid flows for simplicity, which are governed by
the incompressible inviscid Navier-Stokes equations
%—?+u-Vu:—p_1Vp+f, %
where u is the velocity, s is the smoke density that gets passively
advected along with u, p is the pressure used to satisfy the incom-
pressibility constraint, f are time-varying external forces applied to
the fluid body, and p is the fluid density. To properly define the
fluid behaviour, we also need to enforce conditions at the domain
boundaries as well as initial conditions. When discretized, the sim-
ulation takes place over a ny X ny grid and over T time steps. The
process of computing the simulation solution state from simulation
parameters is referred to as forward simulation.

V-u=0, +u-Vs=0, (1)

In contrast, a typical fluid control problem involves finding simu-
lation parameters so that solving Equation 1 achieves a user-defined
goal, such as a target solution state. For this reason, these types of
fluid control problems are referred to as inverse simulation, taking
solution states to simulations parameters.
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To demonstrate our method, we will focus on a subset of fluid
control problems called keyframing, although our method gener-
alizes to other types of inverse simulation problems such as opti-
mizing for airfoil shapes and lift in engineering, where instead of
optimizing a series of forces, the obstacle itself is optimized. Given
a set K of user-provided keyframes s'* where ¢ € IC, we wish to
find a series of time-varying dense force fields f € R™*" *T such
that the simulated density fields s* are as close to s'* as possible.

We can formulate this problem as optimizing parameters f to
minimize an objective ®, (i.e., argmin ®(f, s); [CLL24]) with
f
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where the first term minimizes the discrepancy, measured by the
mean squared error, between the optimized and target smoke densi-
ties at each keyframe ¢, and the second regularization term prevents
excessive control forces from being applied to the simulation. Here,
Nk and N7 are normalization terms, andthe coefficient w is user-
defined. In practice, we found thatw ; = 0.1 leads to a good balance
between visual result and optimized force magnitude.

Our work relies on the use of gradient-based optimization meth-
ods to minimize this objective function. More specifically, we apply
a differentiable simulation approach by using AutoDiff to automat-
ically compute gradients through the construction of the computa-
tion graph. While this method is agnostic to the underlying fluid
solver used, naively using this approach comes with severe draw-
backs. Indeed, to compute the gradient of the objective function
with respect to the forces using AutoDiff, the computation graph
records all the computations encountered during the simulation.
In grid-based simulations, the number of parameters and compu-
tations required increases not only linearly as the number of time
steps increases, but also quadratically (or cubically in 3D) as the
grid resolution increases. These factors contribute to the exponen-
tial scaling in the size of the computation graph. For this reason, the
high memory consumption is a major bottleneck of differentiable
fluid simulation and limits the resolution of the control problem.

To address this problem, we take inspiration from domain de-
composition and multi-resolution methods. To do this, we split the
optimization into two parts, bulk optimization and subgrid opti-
mizations, as shown in Figure 2. The bulk optimization part op-
erates on a down-sampled resolution to optimize the general bulk
motion of the fluid, whereas the subgrid optimization builds on top
of it to refine local details. Both of these optimization steps work at
a lower resolution than the original problem and hence reduce the
memory required to build the computation graph used by AutoDiff.
We present our derivation in 2D and for inviscid flows. Our method
naturally extends to 3D, and we demonstrate 3D experiments in
Section 4.8. Our method focuses on simulations within a closed
domain with slip boundary conditions and no obstacles. Further ef-
fects could be incorporated into the equations of motion of the fluid,
such as viscosity; however, for simplicity, we discuss only inviscid
flows in this work.

3.1. Bulk Optimization

The bulk optimization phase is based on the following insight: we
can decouple the solution forces f* that minimize the objective
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Figure 2: Our pipeline consists of two main components. First, we perform (a) bulk optimization of control forces on down-sampled
simulation trajectory states, and then up-sample and re-simulate the result. We then perform (b) iterative subgrid optimization. Control forces
for each subgrid are optimized and then replaced into the full grid and re-simulated to propagate the optimized information to other quadrants
over iterations. The optimize-and-re-simulate process is repeated until the resulting full grid converges.

function & into bulk and fine details, which correspond to low-
and high-resolution components. Thus, with the bulk optimization
process, we aim to optimize a low-resolution force field that drives
the fluid’s bulk motion to match the keyframes.

At the beginning of the bulk optimization phase, both the
keyframe targets and the simulation initial states are down-sampled
by a factor k into (nx/k) X (ny/k) by averaging the neighbouring
values. These down-sampled keyframes and initial states are then
used for optimizing the down-sampled forces. The initial guess of
the optimized forces is set to a constant zero field.

For each optimization iteration, the simulation is first rolled out
using the down-sampled initial states and forces. Then, the objec-
tive function P is evaluated using the down-sampled keyframes and
the simulated states. Using AutoDiff, the force gradients are com-
puted by back-propagating through the computation graph contain-
ing all operations used for simulation and loss evaluations. With
a optimization step size O, defined by the user, this gradient is
then used to update the forces. This process is repeated for a user-
defined amount of epochs Np,;. After the optimization converges,
we up-sample the forces to the full resolution using bi-linear inter-
polation to obtain the bulk forces f at resolution n, x ny.

In practice, we find the optimal value of k£ depends on the sim-
ulation resolution. Larger factors will result in faster runtime and
lower memory consumption. If the original simulation resolution is
too large, larger k is also beneficial in that it leads to a higher qual-
ity optimized bulk motion due to the reduced degrees of freedom;
however, if the original resolution is already small enough, higher
k leads to lower-quality results after the forces are up-sampled.

As a final step in the bulk optimization, we compute a full-
resolution simulation using f to obtain the bulk smoke $, velocity
0 and pressure p. This step is necessary as simple up-sampling of
these fields would not be physically consistent with the up-sampled
bulk force due to the non-linearity of advection and pressure projec-
tion. Note that because of this non-linearity and this re-simulation
step which is not in the optimization loop, the bulk states will
not perfectly match the full-resolution target keyframes; however,
building on top of the bulk low-frequency global information, we
can optimize for the remaining high-frequency local forces using
subgrid optimization.

We note that the final forward simulation computations, while
full-resolution, do not contribute to the memory consumption for

building the computation graph. For this reason, the memory con-
sumption for bulk optimization is 1/ K compared to the full reso-
lution, where d is the dimension.

3.2. Subgrid Simulation

As we mentioned in the last section, the bulk forces guide the gen-
eral motion of the fluid to be close to the keyframes. To further im-
prove the results, all while maintaining the low memory consump-
tion, we divide the high-resolution grid into subgrids for a second
optimization pass. Our method supports hierarchical division in a
recursive manner. We will describe the base case in this section and
Section 3.3, and the recursive hierarchical case in Section 3.4.

At the base level, our method divides the bulk grids into 2 x 2
valid subgrids §, @ and p, corresponding to smoke, velocity and
pressure subgrids, each of size ”7* X %‘ Our method can be gener-
alized to m x m subgrids for m > 2, and all of the methods described
in the following sections still apply; however, in our experiments,
we did not find that necessary, especially due to the hierarchical
division described in Section 3.4.

3.2.1. Advection

The first non-trivial step in the subgrid forward simulation is the
advection operator, which encapsulates the phenomenon of quanti-
ties being carried through the velocity field. Our advection opera-
tor builds upon the widely-used semi-Lagrangian advection scheme
[Sta99], with specific handling for cases where the back-traced po-
sition computed during advection lands outside of the simulated
subgrids.

In a full-resolution simulation, if the back-traced positions ex-
ceed the simulation domain, depending on the scene settings, there
are different boundary treatments such as nearest-neighbour, reflec-
tion or periodic schemes [Sta99, Bril5]. However, in subgrid simu-
lations, if the back-traced positions exceed the interior boundary, as
shown in Figure 3 left, the location lies within a neighbouring sub-
grid, and all of these existing extrapolation treatments will result in
inaccurate simulation results. To handle these interior boundaries
more robustly, we extract this information from the bulk simula-
tions during subgrid division, as it is available from the forward
simulation up-sampling step and does not suffer from extrapolation
error.

We extend each valid, divided subgrid with a buffer region,
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Figure 3: During advection, back-tracing may exceed interior
boundaries and land outside of the valid region (left). To handle
this case, we use a buffer region of width 8 to ensure the back-trace
lands at a region with known values (right).

denoted s° and u® correspondingly. Figure 3 right illustrates the
valid and buffer region for the bottom-left subgrid. The width of
the buffer region & can be estimated using the bulk velocity as
d = [(maxi X Ar)/Ax], for time step Ar and grid resolution Ax.
During subgrid advection, the values inside the valid regions are
back-traced and updated, while the buffer regions are read-only
and provide information when the back-trace exceeds the interior
boundary, as shown in Figure 3 left.

In practice, we use the CFL condition [CFL28] to determine At
and Ax. To avoid overly large velocity magnitudes that cause high
d, the penalty term in Equation 2 is used to regulate the force mag-
nitude. Throughout our experiments, we did not observe buffer re-
gions of size more than 10% of the full resolution.

3.2.2. Pressure Projection

In fluid simulations, the pressure projection step ensures fluid
incompressibility and adherence to boundary conditions. For
a full-resolution simulation, this step computes pressure using
global velocity divergence and boundary conditions, resulting in a
divergence-free velocity field after applying the pressure gradient.

Dividing the simulation domain into subgrids, however, cre-
ates a loss of global information and introduces unrealistic interior
boundaries. To more closely match the subgrid simulation to the
full-resolution setting, the ideal interior boundary condition should
capture as much global information as possible. As in Section 3.2.1,
existing boundary treatments fall short: Neumann interior bound-
aries impeded fluid flow between subgrids, and free-flow interior
boundaries fail to encode information about velocities outside the
subgrid, leading to incorrect behaviour.

We apply a Dirichlet interior boundary condition leveraging
global information from the bulk optimization in Section 3.1. Fol-
lowing the bulk optimization, we obtain the full resolution bulk
smoke §, velocity @i and pressure p through re-simulation. The bulk
pressure already satisfies the global divergence-free and exterior
boundary constraints and will serve as a reference. By applying this
boundary pressure as a Dirichlet condition between subgrids, the
pressures within each subgrid align closely with the corresponding
bulk pressure. Consequently, the updated and stitched subgrid ve-
locities will resemble the bulk fluid flow and satisfy the constraints.

We demonstrate our method using a staggered grid [HW65] spa-
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Figure 4: The interior boundary pressure at the cell face centre, pb s
is computed from the bulk pressure p. The subgrid pressure pro-
jection should respect the same pressure at the boundary cell face
centre. By using a ‘ghost’ pressure cell p®, we can use a Dirichlet
boundary condition to approximate the required pressure at the in-
terior cell centre.

tial discretization scheme. In a staggered grid, scalar quantities are
stored at grid centres, while vector quantities such as velocity are
stored at grid face centres. Computing the pressure involves solving
a discretized Poisson equation

At (4Pi.j —Pi—1,j — Pit+1,j — Pi,j—1 — Pi,j+1 ) _

P
_ Yy timgg | Yigky T Yoy
Ax Ax ’

3

To construct Dirichlet boundary conditions, we approximate the
interior boundary pressure pb on cell faces by linearly interpolat-
ing the bulk pressures p from adjacent cell centres. This is demon-
strated in Figure 4. Without loss of generality, and in 2D, assume
the boundary lies between cells (i, j) and (i+ 1, j). We approximate
the boundary pressure as p’ = (Pi,j+ Piv1,j)/2 - This boundary
pressure serves as the Dirichlet boundary condition on the interior
boundary during subgrid simulations.

The subgrid pressure should maintain the same pressure on the
interior boundary. We use ‘ghost’ pressure cells plig 41, to derive
the updated Poisson equation when computing subgrid pressures
pi,j- Similarly upholding Dirichlet boundary conditions, the ghost
and interior boundary pressure cells should satisfy pb = (pij +
Plgﬂ 7j)/ 2.

Rearranging and substituting the ghost pressure into Equation 3,
the discretized Poisson equation for cell (i, j) is

At (Spij = Pi-1,j = Pij—1 = Pij+1\ _
P Ax?

Mk T Mg Vi ey | 26
Ax Ax P2
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Algorithm 1 Subgrid optimization

1: Given bulk forces f', smoke $, velocity @, and pressure p
2: for se € 1 to Ngg do
3: for i € randomize (subgrids) do

4 5,0, p' = GetSubgrid (3,4, p) > Section 3.2
5: F = Optimize (s*',&,@',p', Ng)

6: f = Concat f'™ > Concatenate into full resolution
7: §,8, p = Simulate (s, u,f)

8: return §,a,f

The above derivation generalizes to all cells adjacent to interior
boundaries. Finally, by constructing the linear system Ap = b and
solving for the pressures, the velocity is updated using the pressure
gradient. The computed pressures and velocities closely match the
bulk information, ensuring that the forward subgrid simulation re-
sembles the bulk flow.

We note that interpolating the boundary pressure pb is necessary.
If the pressure is taken directly from the neighbouring cell outside
thf: interior. bounda{y, i.e. §etting pf = Pit1,j, the pressure solve
will result in band-like artifacts with a width of two pixels along the
interior boundary, and results in inaccurate simulation outcome.

3.3. Subgrid Optimization

In the previous section, we demonstrated how to forward simulate
subgrids using bulk information. In this section, we detail how to
optimize the subgrids. We first note that all operations we described
in the previous section maintain the solver’s differentiability. In-
deed, once the subgrids are divided, there are no discontinuous op-
erators that block the flow of the gradient. Since the optimization
only takes place at the subgrid level, the gradients do not need to
be propagated to the full grid and hence the discontinuity at sub-
grid division does not affect optimization. Therefore, computing
the gradients for the subgrids is as simple as full-resolution differ-
entiable fluid simulations.

In subgrid optimization, the up-sampled bulk forces are fixed
and serve as a warm start solution. We optimize a series of local
correction forces that refine the simulated state on top of the bulk
forces. Empirically, this initialization scheme results in a more sta-
ble convergence and better results compared to directly updating
the up-sampled bulk forces.

A naive way of optimizing subgrids is to optimize each sub-
grid individually and stitch the optimized subgrids together; how-
ever, with this implementation, each subgrid will not have visibility
to their adjacent subgrids’ updates. This will result in discontinu-
ous stitched simulated states, and re-simulating using the stitched
forces will result in states further away from the target keyframe
and visual artifacts.

We overcome this by iteratively optimizing the subgrids in series
in a randomized order, as shown in Figure 2 part (b). After a sub-
grid is optimized for a user-specified amount of subgrid epochs Ng,
a global re-simulation takes place to update the bulk grids. By re-
simulating, the bulk grid will be updated, and subsequent subgrid

optimizations will have new padded regions for advection and inte-
rior boundaries for pressure. After all subgrids are optimized, this
process takes place repeatedly for a user-controlled super-epoch
number of times Ngg. This process is described in Algorithm 1.
In practice, by tuning the epoch, super-epoch and optimization step
size hyperparameters, the repeated looping optimization leads to
global quality improvement. Experimentally, the choice of the sub-
grid optimization ordering does not affect the optimization result.
Section 4.5 demonstrates there is negligible difference when the
subgrids are optimized in random order, in-order, or by parity (odd
grids first, then even).

With our approach, each subgrid is optimized for a total of
Ny = Ngg X N iterations, and the combination of {Ngg,Ng } de-
termines the trade-off between quality and runtime. Given the same
number of total iterations for each subgrid, smaller Ng will result
in more re-simulations, and hence the locally-updated information
will be more frequently propagated to other subgrids, thus resulting
in better optimization quality; however, the runtime will increase
linearly as Ngg increases due to the additional re-simulations. On
the other hand, larger Ng will result in reduced runtime, but the
information between each subgrid will be less frequently prop-
agated, resulting in worse training quality. In the extreme case
where Ngg = 1, our algorithm is equivalent to the naive approach
described above. We illustrate how settings of super-epochs and
epochs can affect runtime and optimization quality in Section 4.7.2.

To reduce memory consumption, we can optimize each subgrid
separately, hence only requiring computation graph construction
and storage for a (nx/2,ny/2) grid setting. While a re-simulation
at full resolution is needed, no computation graph is required.

3.4. Cascade Optimization

To further reduce memory consumption, the iterative divide-and-
conquer-style method can be applied at multiple levels recursively.
For each level [ = 1,2,..., the subgrid optimizations will operate
on grids of resolution (nx/2',ny/2').

For the bulk optimization, the down-sample factor will be ad-
justed based on the level, such that & > 2! For subgrid optimization,
the full resolution grid is divided into 4 subgrids, and the optimiza-
tion takes place at the lowest level leaf nodes in a depth-first order,
as illustrated in Figure 5. After each subgrid is optimized, the parent
subgrid is re-simulated to re-generate the bulk information used for

\

i
1
i

1
7 stitchand
Resimulate|

Optimization

| stitch and
IResimulate

1 Level 2

Level 1

Figure 5: Hierarchical subgrid optimization. Optimization takes
place at the leaf subgrids. After each subgrid is optimized, it is
stitched to the parent subgrid and the parent subgrid re-simulates to
propagate the changes.
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Algorithm 2 Recursive subgrid optimization

1: Given bulk forces f', smoke $, velocity @, and pressure p
2: for i € randomize (subgrids) do

3 &0, p' = Subdivide §,, p

4 if leaf node level then

5 F = Optimize (s*',5,@', p', Ng) > Section 3.3
6: else
. .
8

f = Recurse (5,@', ')

9:

.8, p = Simulate (s, u,f)
10: return

the subsequent subgrid. This recursive subgrid optimization pro-
cess is illustrated in Algorithm 2. This algorithm is then repeated
for the user-specified super-epoch Ngr amount of iterations.

4. Experiments and Results

We implement our method in PYTHON and PYTORCH [PGM*19].
For simplicity, the pressure projection linear system is solved us-
ing the conjugate gradient algorithm without preconditioning. For
optimization, we use the Adam optimizer [KB14] with exponential
optimization step size scheduling with Y= 0.95, and the step sizes
are adjusted based on each experiment. All experiments are run on
a compute farm server with Intel(R) Xeon(R) W-2135 CPU and
NVIDIA RTX A4000 GPU with VRAM size 16 GB. All data are
created on the CPU by default. Relevant grids, down-sampled grids,
and sub-grids are transferred from the CPU to the GPU during sim-
ulation and optimization, and moved back to the CPU afterwards.

4.1. Rising Plume Final Frame Matching

We first validate our method using a single final keyframe match-
ing example in 1024 x 1024 resolution. In Figure 6, the left image
shows a smoke simulation given an inflow injection and buoyancy
forces, without any other external forces. The simulation rolls out
for 30 frames with a time step size of 0.5. Under the same sim-
ulation settings, by applying a series of hand-crafted ground-truth
forces, we generate a target frame on the right, with a target roll-out
simulation at the top. The optimization goal is to find a space-time
varying force field, such that when applied to the simulation, the
final frame converges to the target keyframe as much as possible.

We define our baseline as the full resolution optimization using
differentiable simulation, as described in Section 2.3. The result of
our baseline is shown in the second row in Figure 6. Due to the high
resolution and hence degrees of freedom, the full-resolution opti-
mization is very sensitive to perturbations to the step size and eas-
ily gets stuck at local minima, resulting in unsatisfactory optimiza-
tion outcome, with Structural Similarity Index Measure (SSIM)
[WBSS04] score 0.7748. In the figure, we showcase the best re-
sult we could obtain by repeatedly tuning hyper-parameters. On
the other hand, our method does not suffer from this issue thanks
to the bulk down-sample optimization process. In this example, the
bulk optimization first down-samples by a factor of k = 8 to opti-
mize the bulk forces for Ny,,;; = 100 epochs with optimization step
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Target Rollout

TICK

Full Resolution
&M

‘

£
Our Method

4

Figure 6: Top left shows the final frame of a plume simulation that
rises due to buoyancy, and top right shows the keyframe target. First
row: applying a series of hand-crafted forces, we can painstakingly
attain the target final frame. Second row: without any blurring or
down-sampling, a full-resolution optimization cannot escape a lo-
cal minima, failing to match the target. Third row: our method au-
tomatically optimizes for forces that result in a closer target match.

Loss

—— Bulk Loss
Subgrid Loss

0.25 —— Baseline Loss

0.05

0 25 50 75 100 125 150 175 200
Epoch

Figure 7: Loss plot for the plume example at resolution 10242, We
visualize the density mean squared error, instead of the full energy
function ®. While the baseline fails to optimize after 200 epochs,
our method decreases the loss significantly. For our method, the
first 100 epochs correspond to the down-sampled bulk optimiza-
tion. Later 100 epochs correspond to the subgrid optimization.

Size Olpyr = 3 X 1072, This helps reduce the degrees of freedom,
which not only guides the optimization in the correct direction but
also makes our method more stable. The bulk optimization pro-
duces an SSIM score of 0.7991. Then, continuing from the bulk
state, we carry out subgrid optimization at division level / = 1 for
Ng = 4 and Ngg = 25 epochs and step size O, = 103 to further
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Figure 8: The memory consumption of optimization against reso-
lutions. Missing data points are due to simulation solves failing to
converge. Our method outperforms gradient checkpoinitng, and the
reduction in memory increases as subgrid division level increases.

improves the optimized result, and eventually produces the final
row in the figure, with SSIM score 0.8093.

Figure 7 compares the loss between the baseline at full reso-
Iution and our method. The bulk loss is measured at each epoch
by up-sampling and re-simulating at the full resolution. Similarly,
the subgrid loss is measured after each super-epoch, by stitching
the optimized force and re-simulating at the full resolution. For a
clearer comparison and visualization, instead of the objective func-
tion @, we plot the pixel-wise mean squared error of the density
s and do not include the penalty losses. We first observe that the
loss of the baseline optimization aligns with its visual result. Due
to the high degrees of freedom, the optimization oscillates and per-
forms poorly. On the other hand, the bulk optimization in the first
100 epoch is able to quickly reduce the loss and optimize the bulk
motion of the fluid. Subsequently, by dividing the grid into sub-
grids and iteratively refining each one of them, the loss is able to
decrease further.

We note that the subgrid optimization loss curve oscillates be-
cause the re-simulation will propagate local forces to the global
domain. Since fluid simulation is highly non-linear, a force that im-
proves a local region may not propagate the same effect to other
subgrids.

Table 1: Memory and runtime for optimizing the plume rising
scene using different optimization schemes for different resolu-
tions. The bolded data ran out of memory and was re-run on a
Quadro RTX 8000 GPU with 48 GB VRAM for validation (run-
time not reported due to hardware difference).

PHIFLOW | Full Optim. | Checkpoint Level 1 Level 2

Mem. | Time [Mem.| Time |Mem.| Time |Mem.|Time |Mem.| Time
(GB) | (h:m) | (GB) | (h:m) | (GB) | (h:m) | (GB) |(h:m)| (GB) |(h:m)
128 | 0.22 | 1:05 | 0.06 | 0:16 | 0.05 | 0:40 | 0.02 | 0:46 | 0.01 | 1:04
256 | 0.86 | 1:13 | 0.25 | 0:26 | 0.19 | 1:01 | 0.06 | 1:06 | 0.03 | 1:30
512|344 1 1:29 | 097 | 0:30 | 0.72 | 1:05 | 0.26 | 1:24 | 0.12 | 1:47
1024 13.75| 1:58 | 3.27 | 0:38 | 2.86 | 1:08 | 1.05 | 1:33 | 0.51 | 2:17
2048 OOM| \ |13.06| 1:48 |11.45| 2:44 | 4.50 | 2:59 | 2.65 | 3:58
3072|OOM| \ [29.38 \ 19.21 \ 9.58 | 5:06 | 5.15 | 5:46

Res.
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Figure 9: Equal 100 epoch runtime against resolution. Missing data
points are due to out-of-memory on consumer-level graphics card
or failed simulation convergence. As resolution increases, the run-
time increases for all implementations. Our method provides a new
trade-off between memory consumption and optimization runtime.

4.2. Benchmark and Stress Test

Table 1 shows the memory consumption and runtime cost when
running the experiment described above under different resolu-
tions. We make comparisons against PHIFLOW’s implementation
[HTK19], our baseline implementation at full resolution, gradient
checkpointing [CXZG16] at full resolution, and our subgrid opti-
mization techniques with division levels 1 and 2. Across all these
implementations, the pressure projection step uses the conjugate
gradient solver with the same maximum iteration count of 500, and
the same relative tolerance of 1072

We acknowledge that PHIFLOW supports different AutoDiff
frameworks, and more complex and optimizable boundary condi-
tions, and hence the heavier overhead may not make a fair com-
parison. We also note that PHIFLOW supports just-in-time (JIT)
compilation, which if enabled, would greatly improve the run-
time performances; however, we did not implement JIT compila-
tion as our main goal focused on reducing the memory bottleneck.
With gradient checkpointing, we checkpoint every simulation time
step. For simulation with T time steps, this checkpointing scheme
will reduce the memory consumption of computing the gradient to
O(V/T) when computing the gradient. While the simulation and
gradient computation (hence optimization) results are the exact
same as that of the full resolution, the runtime will increase due
to the re-computations between each checkpoint [CXZG16]. More-
over, this checkpointing scheme is not invariant to resolution, and
hence the memory consumption will still increase exponentially as
the simulation resolution increases.

Figure 8 shows the memory consumption for optimizing with
different methods for 100 epochs. We demonstrate that our sub-
grid method outperforms gradient checkpointing, and reduces the
memory consumption compared to full resolution at least by half.
Increasing the subgrid recursion level also leads to lower memory
consumption, but the memory saving diminishes in a logarithmic
fashion. The diminishing return is expected since the decrease in
degrees of freedom is logarithmic, and the overhead for storing sim-
ulation states at high resolution is also not negligible. Note that for
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Ours 128

Ours 256

[PM17] 128

Figure 10: We compare our method (left two) against the method of Pan and Manocha [PM17] (right) on the FLUID example. We demon-
strate results at both resolutions of 128 and 256%. Each row shows the resulting simulation at frames 0, 20, 30, 35, 40 respectively.

resolutions above 2048 x 2048, the PHIFLOW forward simulation
fails to converge, and hence is not included in our reporting. At res-
olution 3072 x 3072, both full-resolution optimization and gradient
checkpointing run out of memory. Our method successfully reduces
the memory consumption: at level one recursion, our method uses
32% of the memory (9.58 GB) of a full-resolution optimization and
50% of the gradient checkpointing option. With level two recur-
sion, memory usage is further reduced to 5.15 GB (18% and 27%
compared to full resolution and gradient checkpointing).

Figure 9 shows the optimization runtime using different methods
for 100 epochs. For our subgrid approach, we consider one full-
resolution epoch to be equivalent to the combination of one bulk
epoch and one epoch for each subgrid. This figure highlights the
fact that our method offers a new trade-off between memory con-
sumption and optimization runtime. Another factor that contributes
to the runtime is the combination of the number of super-epochs
and epochs, as detailed in Section 4.7.2

4.3. ‘FLUID’ Letter Morphing

We compare our multi-resolution hierarchical approach with the
work of Pan and Manocha [PM17], which splits the solution of the
optimization into two objectives. We recreate the “FLUID” exam-
ple and provide a visual and performance comparison. Each let-
ter is optimized separately, and we optimize on both the original
128 x 128 resolution and a larger 256 x 256 resolution for 40 time
steps. The bulk optimization takes k = 2 and runs for Np,;;, = 100
iterations with O, = 1072, The subgrid optimization divides the
domain with / = 1, and takes Ngg = 50 and Ng =2, and oo = 1073,

Figure 10 visually compares the result between our method and
Pan and Manocha [PM17]. Our method produces fewer artifacts
and matches the FLUID target better. As for memory and perfor-
mance, Pan and Manocha [PM17] reported to have taken 0.06GB
with 0.25h runtime. For the same 128 x 128 resolution, our method
takes 0.02GB with 2.68h runtime, and for the higher 256 x 256
resolution, our method takes 0.08GB with 4.08h runtime.
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Figure 11: The optimized forces morph the simulated smoke into
“GRAPH?” by defining multiple letter keyframes. The top row is the
optimized simulation rollout. Every other image is the reconstruc-
tion of a target letter. At the bottom, we show the loss plot and the
final “H” letter after bulk and subgrid optimization finishes.

4.4. Multi-Keyframe Animation

We apply our method to multiple target keyframes, illustrating how
the subgrid optimization can optimize local forces that improve the
bulk optimized result. In Figure 11, the fluid morphs between 5 let-
ter keyframes ‘GRAPH’ over 100 frames on a 256 x 256 domain.
The bulk optimization uses Np,;; = 200 epochs with a step size
of Oy = 1073, and each subgrid optimization uses Ny, = 100
epochs O, = 10~*. The optimization converges, correctly match-
ing the desired keyframes. We visualize the bulk and subgrid loss
plots, which indicate that the subgrid optimization reduces the loss
significantly after the bulk optimization converges. We also show
the keyframes for the final letters ‘H’ after both bulk and sub-
grid optimization converges. Qualitatively, we observe that the con-
verged bulk result correctly produces the general shape of the let-
ters, but the local details such as the edges of the letters are chaotic
and irregular. The subgrid optimization, by contrast, successfully
optimizes the local forces that enhance the bulk initial results. Con-
sequently, subgrid-refined letters have sharper edges and more dis-
tinctly defined shapes compared to the bulk-only results.
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4.5. Latte Art

We provide an example of keyframe morphing: given a Latte art
image as a target keyframe, starting from a circular initial smoke
state, the optimization optimizes a series of forces that drive the
density towards the latte art design. The simulation runs at 512 x
512 for 30 time steps with a step size of 0.5s. The bulk optimization
down-samples the grid with a factor of kK = 2 and optimizes with a
step size of O, = 0.05 for Ny, = 200 epochs. Then the subgrid
optimization takes place at recursion level / = 1, and each subgrid is
optimized for Ny,;, = 200 epochs with a step size of o,,;, = 0.0001.
Figure 12 shows the result rendered in a coffee mug.

Figure 13 shows the loss curve of the 2D latte art morph op-
timization. We experiment with different subgrid optimization or-
dering described in Section 3.3. Continuing from the bulk optimiza-
tion, we investigate alternative subgrid ordering schedules, includ-
ing in-order and parity (odd followed by even) ordering, with step
size o= 1073 and NE =4, Ngg = 50 iterations. The result shows
that the ordering of the subgrid optimization does not have a sig-
nificant effect on the optimization result.

4.6. Looping Fluid Simulation

Looping fluid simulation is a long-standing challenge in fields such
as visual effects and game development. Although recent advances
have been made in looping simulations for thin shells and N-body
systems [JWLC23], cyclic fluid simulation still remains an open
challenge. We apply the fluid control framework that we introduced
in this paper to tackle this problem by framing it as a keyframe
control problem. In this application, arbitrary sinks are created to
dissipate the smoke so that injecting the smoke does not fill the
scene. First, we run the forward simulation with random forces over
a period of time. Then, we take one frame of the simulation and
designate it as the start frame of the looping simulation. The goal
of the control problem is to compute forces throughout time, such
that continuing the simulation from the start frame will result in
the end frame as close to the start frame as possible. On top of the
smoke density mean squared error loss, we also impose a velocity
mean squared error loss in our energy function @, such that the
animation loops in a smooth motion.

With this formulation, we solve the control problem with our
subgrid division at 256 x 256 for 30 time steps with time step of
0.5s. We use two levels of subgrid division, with a bulk optimiza-
tion step size of O, = 0.01 and Ny, = 100 epochs. The sub-
grid optimization recurses 2 levels, with each subgrid optimized for
Ny = 100 epochs with a step size of o, = 0.001 (see Figure 14).
Both the bulk and subgrid optimizations converge to a simulation
end state steered towards the target.

Figure 12: A series of forces are optimized to morph a circular disk
into a latte art. The resultant 2D simulation is then rendered onto a
coffee mug to create a latte art effect.
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Figure 13: The latte art morph loss curve with different subgrid op-

timization ordering scheme, including random order, in-order and

parity (even grids first, then odd).

4.7. Design Choice Analysis
4.7.1. Subgrid Division Level

We study the effect of subgrid division level / on the optimiza-
tion using our latte morph optimization as an example. From the
same bulk optimization checkpoint, we optimize using level 1 and
level 2 subgrid divisions using the same step size 0. = 1072 and
Ng =4, Ngg = 50. Figure 15 demonstrates the loss graph of the
optimizations. We observe that while both division levels are able
to significantly decrease the loss further, level 1 subgrid division is
able to reduce the loss faster compared to that of level 2. Combin-
ing this observation with Figure 8 and Figure 9, we conclude that
L1 achieves higher accuracy and lower runtime, though L2 con-
sumes less memory. For this reason, level 1 should be used if there

is enough memory.
s5

Figure 14: Looping simulations with external force optimization
and 2-level subgrids, matching the final and initial frames.

Table 2: Epoch and super-epoch combination comparison. Each
subgrid is optimized for 100 epochs in total, hence the optimization
runtime remains mostly constant; however, the super-epoch and
epoch combination determines the number of re-simulations. More
re-simulations result in a longer total runtime. More re-simulations
usually lead to lower converged loss.

N N Total Optimization  Re-simulation | Re-simulation
SE X NE runtime (h:m) runtime (h:m)  runtime (h:m) loss
1 x 100 0:19 0:18 0:01 0.03597
2 x50 0:21 0:18 0:03 0.03581
4x25 0:24 0:18 0:06 0.03559
5x20 0:26 0:18 0:08 0.03552
10 x 10 0:33 0:18 0:15 0.03479
20%x5 0:49 0:18 0:31 0.03486
25x4 0:57 0:18 0:39 0.03310
502 1:36 0:18 1:18 0.03361
100 x 1 2:56 0:18 2:38 0.03381
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Figure 15: Optimizing the subgrid using level 1 and 2 division,

continuing from the same bulk checkpoint in the latte art morph.

Under the same number of epochs and step size, level 1 optimiza-

tion results in lower loss

4.7.2. Epoch and Super Epoch Benchmark

One important hyper-parameter in our algorithm is the combina-
tion of subgrid epochs Ng and super-epochs Ngg. As described in
Section 3.3, even though the combination of Ng and Ngg does not
affect the memory consumption of our algorithm, it determines the
trade-off between runtime and quality. Given a fixed amount of
total number of epochs per subgrid N = Ng X Ngg, a smaller Ng
larger Ngr combination indicates more re-simulations, leading to
a higher runtime. In this case, the information is exchanged and
updated more frequently between subgrids, usually leading to bet-
ter optimization quality. Conversely, a larger Ng and smaller Ngg
combination will result in faster training speed due to the reduced
re-simulations, but worse results. In this experiment, we investigate
the relationship between the two hyper-parameters.

For the test scene in Section 4.1, after 100 iterations of down-
sampled bulk optimization, we continue subgrid optimization for
Ngup = 100 iterations at step size O, = 1074, testing multiple Ng
and Ngg combinations; we report runtime and final loss for each
combination in Table 2. We observe that optimization runtime for
each super-epoch and epoch combination remains constant, and as
Nsg increases the number of re-simulations increases (and thus the
total runtime). Also note that, at low Ngg, the loss is higher due
to reduced information propagation; however, as Ngg increases, the
loss decreases and reaches a minimum with Ngg = 25 and Ng = 4.
Further increasing Ngg does not further decrease the loss, and the
losses are still lower compared than Ngg < 25.

4.8. 3D Implementation

We demonstrate through a morphing example that our method de-
scribed in Section 3 extends to 3D. We use test scenes with res-
olution of 128% and 256 for 40 frames. Starting from a sphere,
the goal is to optimize a series of dense force fields that morph
the smoke into the target shape. The bulk optimization down-
samples with £ = 2, and uses Np,;; = 100 iterations with step size of
Olpuik = 1073, The subgrid optimization is done with / = 1, which
divides the simulation domain into 8 subgrids, with Nggz = 50 and
Ng =4 and o, = 107*. As seen in Figure 1, our method opti-
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Figure 16: Top row shows our result after bulk optimization (left)
and subgrid optimization (middle), compared against the baseline
method (right) at resolution 1283 for 40 time steps. Bottom left
shows our method at resolution 256° for 40 time steps. Baseline
fails to optimize due to out of memory error (exceeds 40GB).

mizes a series of forces that leads to a continuous simulationthat
eventually reaches the armadillo target.

Figure 16 visually compares the optimized result from bulk, sub-
grid, and baseline optimizations at both resolutions. The baseline
optimization runs for N = 170 epochs and uses step size 0. = 1072,
We observe the bulk optimization generates global forces that
morphs the smoke into the general shape; however, local details
such as the claws are of low quality due to the low resolution of
the force field. Continuing from the bulk, the subgrid optimiza-
tion refines locally and produces better results with finer details. At
resolution 1283, the baseline method produces a better result, but
takes 14.22GB of memory and was optimized for 1.1h, whereas
our method takes only 2.10GB and was optimized for 4.8h. At res-
olution 256°, the baseline method fails due to out of memory even
on a more powerful Quadro RTX 8000 GPU with 48GB of VRAM;
however, our method is still able to converge successfully with the
consumption of 15.90GB of VRAM with optimization time 31.4h.

Figure 17 demonstrates the optimization loss curve correspond-
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Figure 17: Loss curve for morphing from a sphere to a 3D ar-
madillo at resolution 128°.
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Figure 18: The memory consumption of the armadillo morph using

different optimization methods at several resolutions. The baseline

full resolution optimization fails at resolution 2563, even on a more

powerful GPU with 40GB VRAM.
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Figure 19: The runtime of optimizing of the armadillo morph for
optimizing 100 epochs at different resolution. The full resolution
optimization at 256° resolution is not reported due to out of mem-
ory.

ing to the resolution 1283. Aligned with the visual demonstration,
the bulk optimization decreases the loss by optimizing the low-
resolution forces, and the subgrid optimization decreases the loss
further by optimizing at high resolution locally. Compared to the
baseline of optimizing at full resolution, the quality does not de-
grade significantly. Figure 18 and 19 showcase the memory con-
sumption and runtime with respect to resolution. Similar to the 2D
result, in trading runtime and making small compromises in quality,
we reduce the memory consumption drastically.

5. Conclusion and Discussion

We presented a hierarchical splitting approach to reduce the mem-
ory consumption of differentiable fluid simulation. We demon-
strated that our splitting method requires significantly less memory
and achieves comparable quality to previous methods, at the ex-
pense of additional runtime. Although our method saves memory
by trading runtime, it enables optimizations on large scenes where
full-resolution optimization was unfeasible due to the memory bot-
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tleneck. In terms of optimization quality, in some cases, our method
results in less accuracy compared to the baseline full-resolution op-
timization, and in other cases, our bulk optimization helps reduce
the degrees of freedom and facilitates escaping the local minima,
resulting in better quality. Our work addresses the memory bottle-
neck and opens many exciting avenues.

Firstly, during subgrid optimization, the re-simulation after each
subgrid epoch is necessary to propagate the local forces to the other
subgrids, leading to an additional cost in runtime. This is mainly
caused by the fact that during simulation and optimization, each
subgrid has no knowledge of the neighbouring subgrids’ states such
as density or forces. A possible direction of research is to improve
the coupling between subgrids. Such improvements can be done at
the simulation level by coupling with not only pressure, but also ve-
locity, density and forces. Another possible approach is improving
at the loss level by injecting forces information from neighbouring
subgrids through better penalty terms. Exploring decomposition
strategies beyond spatial partitioning, such as frequency-domain
approaches inspired by octave-based representations in wave sim-
ulations, is also a promising direction for future research.

Secondly, our experiments currently only support box-like do-
mains with easily-described slip boundary conditions. Supporting
a wider range of boundary conditions and obstacles into the scene
requires extra engineering and introduces an added layer of com-
plexity due to the grid-based data structure in PYTORCH. One fu-
ture avenue of work is to support more general scenes and fluid-
obstacle interactions.

Thirdly, in this work, we focused our attention on optimizing
space-time varying forces that drive fluid motion; however, the ca-
pabilities of differentiable simulation extend far beyond this appli-
cation. We believe additional parameters such as inflow location,
fluid density, temperature, and even obstacle shape, could be op-
timized by extending this framework. Simpler scalar parameters
such as fluid density can be optimized by treating them as input
parameters to the differentiable simulator and taking gradients of
the loss with respect to them. Optimizing inflow location and ob-
stacle shapes would require further attention to the sub-grid dis-
continuities; and non-axis-aligned obstacles present another layer
of challenges. These challenges present a broader scope for further
exploration.

Finally, a main trade-off our method makes is the increased run-
time. This is due to a multitude of factors. Generalizing our subgrid
division scheme from 2 x 2 to m X m, for level / division, would
require mdl optimizations to take place in series. As shown in Sec-
tion 4.7.2, depending on the combination between the super-epoch
and epoch parameters, the re-simulation runtime is not negligible.
One future work direction to address this problem is to come up
with better heuristics to determine the balance between the super-
epoch and subgrid epoch combination.
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